foapy.characteristics
The package provides a comprehensive set of characteristics for measuring the properties of given order.
The table below summarizes the available characteristics that depend only on intervals:
Linear scale | Logarifmic scale | |||
---|---|---|---|---|
Arithmetic Mean | \(\Delta_a = \frac{1}{n} * \sum_{i=1}^{n} \Delta_{i}\) | |||
Geometric Mean | \(\Delta_g=\sqrt[n]{\prod_{i=1}^{n} \Delta_{i}}\) | \(g = \frac{1}{n} * \sum_{i=1}^{n} \log_2 \Delta_{i}\) | Average Remoteness | |
Volume | \(V=\prod_{i=1}^{n} \Delta_{i}\) | \(G=\sum_{i=1}^{n} \log_2 \Delta_{i}\) | Depth |
The table below summarizes the available characteristics that depend on cogeneric intervals ( grouped by element of the alphabet):
Characteristics | |
---|---|
Descriptive Information | \(D=\prod_{j=1}^{m}{\left(\sum_{i=1}^{n_j}{\frac{\Delta_{ij}}{n_j}}\right)^{\frac{n_j}{n}}}\) |
Identifying Information | \(H=\frac {1} {n} * \sum_{j=1}^{m}{(n_j * \log_2 \sum_{i=1}^{n_j} \frac{\Delta_{ij}}{n_j})}\) |
Regularity | \(r= \sqrt[n]{\prod_{j=1}^{m} \frac{\prod_{j=1}^{n_j} \Delta_{ij}}{{\left(\frac{1}{n_j}\sum_{i=1}^{n_j}{\Delta_{ij}}\right)^{n_j}}}}\) |
Uniformity | \(u = \frac {1} {n} * \sum_{j=1}^{m}{\log_2 \frac{ (\sum_{i=1}^{n_j} \frac{\Delta_{ij}}{n_j})^{n_j} } { \prod_{i=1}^{n_j} \Delta_{ij}}}\) |
ma subpackage provides characteristics for cogeneric intervals ( grouped by element).