Calculates average geometric value of intervals lengths.
\[ \Delta_g=\sqrt[n]{\prod_{i=1}^{n} \Delta_{i}}\]
where \( \Delta_{i} \) represents each interval and \( n \)
is the total number of intervals.
Parameters:
Name |
Type |
Description |
Default |
intervals
|
array_like
|
|
required
|
dtype
|
dtype
|
|
None
|
Returns:
Type |
Description |
float
|
The geometric mean of the input array of intervals.
|
Examples:
Calculate the geometric mean of intervals of a sequence.
| import foapy
import numpy as np
source = ['a', 'b', 'a', 'c', 'a', 'd']
intervals = foapy.intervals(source, foapy.binding.start, foapy.mode.normal)
result = foapy.characteristics.geometric_mean(intervals)
print(result)
# 2.4018739103520055
# Improve precision by specifying a dtype.
result = foapy.characteristics.geometric_mean(intervals, dtype=np.longdouble)
print(result)
# 2.4018739103520053365
|
Source code in .tox/docs-deploy/lib/python3.11/site-packages/foapy/characteristics/_geometric_mean.py
| def geometric_mean(intervals, dtype=None):
"""
Calculates average geometric value of intervals lengths.
$$ \\Delta_g=\\sqrt[n]{\\prod_{i=1}^{n} \\Delta_{i}}$$
where \\( \\Delta_{i} \\) represents each interval and \\( n \\)
is the total number of intervals.
Parameters
----------
intervals : array_like
An array of intervals
dtype : dtype, optional
The dtype of the output
Returns
-------
: float
The geometric mean of the input array of intervals.
Examples
--------
Calculate the geometric mean of intervals of a sequence.
``` py linenums="1"
import foapy
import numpy as np
source = ['a', 'b', 'a', 'c', 'a', 'd']
intervals = foapy.intervals(source, foapy.binding.start, foapy.mode.normal)
result = foapy.characteristics.geometric_mean(intervals)
print(result)
# 2.4018739103520055
# Improve precision by specifying a dtype.
result = foapy.characteristics.geometric_mean(intervals, dtype=np.longdouble)
print(result)
# 2.4018739103520053365
```
"""
n = len(intervals)
# Check for an empty list or a list with zeros
if n == 0 or all(x == 0 for x in intervals):
return 0
from foapy.characteristics import depth
return np.power(2, depth(intervals, dtype=dtype) / n, dtype=dtype)
|