Skip to content

foapy.characteristics.ma

The package provides a comprehensive set of vector characteristics for measuring the properties of a cogeneric order.

The table below summarizes vector representation of the characteristics that depend only on intervals:

Linear scale Logarifmic scale
Arithmetic Mean \(\left[ \Delta_{a_j} \right]_{1 \le j \le m} = \left[ \frac{1}{n_j} * \sum_{i=1}^{n_j} \Delta_{ij} \right]_{1 \le j \le m}\)
Geometric Mean \(\left[ \Delta_{g_j} \right]_{1 \le j \le m} = \left[ \left( \prod_{i=1}^{n_j} \Delta_{ij} \right)^{1/n_j} \right]_{1 \le j \le m}\) \(\left[ g_j \right]_{1 \le j \le m} = \left[ \frac{1}{n_j} * \sum_{i=1}^{n_j} \log_2 \Delta_{ij} \right]_{1 \le j \le m}\) Average Remoteness
Volume \(\left[ V_j \right]_{1 \le j \le m} = \left[ \prod_{i=1}^{n_j} \Delta_{ij} \right]_{1 \le j \le m}\) \(\left[ G_j \right]_{1 \le j \le m} = \left[ \sum_{i=1}^{n_j} \log_2 \Delta_{ij} \right]_{1 \le j \le m}\) Depth

The table below summarizes the advanced characteristics of cogeneric intervals:

Characteristics
Identifying Information \(\left[ H_j \right]_{1 \le j \le m} = \left[ \log_2 { \left(\frac{1}{n_j} * \sum_{i=1}^{n_j} \Delta_{ij} \right) } \right]_{1 \le j \le m}\)
Periodicity \(\left[ \tau_j \right]_{1 \le j \le m} = \left[ \left( \prod_{i=1}^{n_j} \Delta_{ij} \right)^{1/n_j} * \frac{ n_j }{ \sum_{i=1}^{n_j} \Delta_{ij} } \right]_{1 \le j \le m}\)
Uniformity \(\left[ u_j \right]_{1 \le j \le m} = \left[ \log_2 { \left(\frac{1}{n_j} * \sum_{i=1}^{n_j} \Delta_{ij} \right) } - \frac{1}{n_j} * \sum_{i=1}^{n_j} \log_2 \Delta_{ij} \right]_{1 \le j \le m}\)