Calculates uniformity of intervals grouped by element of the alphabet.
\[ u = \frac {1} {n} * \sum_{j=1}^{m}{\log_2 \frac{ (\sum_{i=1}^{n_j} \frac{\Delta_{ij}}{n_j})^{n_j} } { \prod_{i=1}^{n_j} \Delta_{ij}}}\]
where \( m \) is count of groups (alphabet power), \( n_j \) is count of intervals in group \( j \),
\( \Delta_{ij} \) represents an interval at index \( i \) in group \( j \) and \( n \) is total count of intervals across all groups.
\[n=\sum_{j=1}^{m}{n_j} \]
Parameters:
Name |
Type |
Description |
Default |
|
array_like
|
An array of intervals grouped by element
|
required
|
|
dtype
|
|
None
|
Returns:
Type |
Description |
float
|
The uniformity of the input array of intervals_grouped.
|
Examples:
Calculate the uniformity of intervals_grouped of a sequence.
| import foapy
import numpy as np
source = np.array(['a', 'b', 'a', 'c', 'a', 'd'])
order = foapy.ma.order(source)
print(order)
#[[0 -- 0 -- 0 --]
# [-- 1 -- -- -- --]
# [-- -- -- 2 -- --]
# [-- -- -- -- -- 3]]
intervals_grouped = foapy.ma.intervals(order, foapy.binding.start, foapy.mode.normal)
print(intervals_grouped)
# [
# array([1, 2, 2]),
# array([2]),
# array([4]),
# array([6])
# ]
# m = 4
# n_0 = 3
# n_1 = 1
# n_2 = 1
# n_3 = 1
# n = 6
result = foapy.characteristics.uniformity(intervals_grouped)
print(result)
# 0.03514946374976957
# Improve precision by specifying a dtype.
result = foapy.characteristics.uniformity(intervals_grouped, dtype=np.longdouble)
print(result)
# 0.03514946374976969819
|
Source code in .tox/docs-deploy/lib/python3.11/site-packages/foapy/characteristics/_uniformity.py
| def uniformity(intervals, dtype=None):
"""
Calculates uniformity of intervals grouped by element of the alphabet.
$$ u = \\frac {1} {n} * \\sum_{j=1}^{m}{\\log_2 \\frac{ (\\sum_{i=1}^{n_j} \\frac{\\Delta_{ij}}{n_j})^{n_j} } { \\prod_{i=1}^{n_j} \\Delta_{ij}}}$$
where \\( m \\) is count of groups (alphabet power), \\( n_j \\) is count of intervals in group \\( j \\),
\\( \\Delta_{ij} \\) represents an interval at index \\( i \\) in group \\( j \\) and \\( n \\) is total count of intervals across all groups.
$$n=\\sum_{j=1}^{m}{n_j} $$
Parameters
----------
intervals_grouped : array_like
An array of intervals grouped by element
dtype : dtype, optional
The dtype of the output
Returns
-------
: float
The uniformity of the input array of intervals_grouped.
Examples
--------
Calculate the uniformity of intervals_grouped of a sequence.
``` py linenums="1"
import foapy
import numpy as np
source = np.array(['a', 'b', 'a', 'c', 'a', 'd'])
order = foapy.ma.order(source)
print(order)
#[[0 -- 0 -- 0 --]
# [-- 1 -- -- -- --]
# [-- -- -- 2 -- --]
# [-- -- -- -- -- 3]]
intervals_grouped = foapy.ma.intervals(order, foapy.binding.start, foapy.mode.normal)
print(intervals_grouped)
# [
# array([1, 2, 2]),
# array([2]),
# array([4]),
# array([6])
# ]
# m = 4
# n_0 = 3
# n_1 = 1
# n_2 = 1
# n_3 = 1
# n = 6
result = foapy.characteristics.uniformity(intervals_grouped)
print(result)
# 0.03514946374976957
# Improve precision by specifying a dtype.
result = foapy.characteristics.uniformity(intervals_grouped, dtype=np.longdouble)
print(result)
# 0.03514946374976969819
```
""" # noqa: E501
from foapy.characteristics import average_remoteness, identifying_information
total_elements = np.concatenate(intervals)
H = identifying_information(intervals, dtype=dtype)
g = average_remoteness(total_elements, dtype=dtype)
return H - g
|