Congeneric Decomposition
Any Sequence (including Partial Sequence) can be decomposed into \(m\) (power of an Alphabet) Congeneric Sequences length of \(l\). Each congeneric sequence would be compatible with all other congeneric sequences, so the procedure is invertible. Result of the decomposition can be represented as a matrix \(m \times l\)
The sequence
block-beta
columns 36
seq1["I"] seq2["N"] seq3["T"] seq4["E"] seq5["L"] seq6["L"] seq7["I"] seq8["G"] seq9["E"] seq10["N"]
seq11["C"] seq12["E"] seq13[" "] seq14["I"] seq15["S"] seq16[" "] seq17["T"] seq18["H"] seq19["E"] seq20[" "]
seq21["A"] seq22["B"] seq23["I"] seq24["L"] seq25["I"] seq26["T"] seq27["Y"] seq28[" "] seq29["T"] seq30["O"]
seq31[" "] seq32["A"] seq33["D"] seq34["A"] seq35["P"] seq36["T"]
classDef c1 fill:#ff7f0e,color:#fff;
classDef c2 fill:#ffbb78,color:#000;
classDef c3 fill:#2ca02c,color:#fff;
classDef c4 fill:#98df8a,color:#000;
classDef c5 fill:#d62728,color:#fff;
classDef c6 fill:#ff9896,color:#000;
classDef c7 fill:#9467bd,color:#fff;
classDef c8 fill:#c5b0d5,color:#000;
classDef c9 fill:#8c564b,color:#fff;
classDef c10 fill:#c49c94,color:#000;
classDef c11 fill:#e377c2,color:#fff;
classDef c12 fill:#f7b6d2,color:#000;
classDef c13 fill:#bcbd22,color:#fff;
classDef c14 fill:#dbdb8d,color:#000;
classDef c15 fill:#17becf,color:#fff;
classDef c16 fill:#9edae5,color:#000;
class seq1,seq7,seq14,seq23,seq25,i1,i7,i14,i23,i25 c1
class seq2,seq10,n2,n10 c2
class seq3,seq17,seq26,seq29,seq36,t3,t17,t26,t29,t36 c3
class seq4,seq9,seq12,seq19,e4,e9,e12,e19 c4
class seq5,seq6,seq24,l5,l6,l24 c5
class seq8,g8 c6
class seq11,c11 c7
class seq13,seq16,seq20,seq28,seq31,sp13,sp16,sp20,sp28,sp31 c8
class seq15,s15 c9
class seq18,h18 c10
class seq21,seq32,seq34,a21,a32,a34 c11
class seq22,b22 c12
class seq27,y27 c13
class seq30,o30 c14
class seq33,d33 c15
class seq35,p35 c16
decomposed into
block-beta
columns 37
diag["⟍"] col1["1"] col2["2"] space:16 col19["..."] space:16 col36["l"]
row1["1"] i1["I"] i2["-"] i3["-"] i4["-"] i5["-"] i6["-"] i7["I"] i8["-"] i9["-"] i10["-"]
i11["-"] i12["-"] i13["-"] i14["I"] i15["-"] i16["-"] i17["-"] i18["-"] i19["-"] i20["-"]
i21["-"] i22["-"] i23["I"] i24["-"] i25["I"] i26["-"] i27["-"] i28["-"] i29["-"] i30["-"]
i31["-"] i32["-"] i33["-"] i34["-"] i35["-"] i36["-"]
row2["2"] n1["-"] n2["N"] n3["-"] n4["-"] n5["-"] n6["-"] n7["-"] n8["-"] n9["-"] n10["N"]
n11["-"] n12["-"] n13["-"] n14["-"] n15["-"] n16["-"] n17["-"] n18["-"] n19["-"] n20["-"]
n21["-"] n22["-"] n23["-"] n24["-"] n25["-"] n26["-"] n27["-"] n28["-"] n29["-"] n30["-"]
n31["-"] n32["-"] n33["-"] n34["-"] n35["-"] n36["-"]
space t1["-"] t2["-"] t3["T"] t4["-"] t5["-"] t6["-"] t7["-"] t8["-"] t9["-"] t10["-"]
t11["-"] t12["-"] t13["-"] t14["-"] t15["-"] t16["-"] t17["T"] t18["-"] t19["-"] t20["-"]
t21["-"] t22["-"] t23["-"] t24["-"] t25["-"] t26["T"] t27["-"] t28["-"] t29["T"] t30["-"]
t31["-"] t32["-"] t33["-"] t34["-"] t35["-"] t36["T"]
space e1["-"] e2["-"] e3["-"] e4["E"] e5["-"] e6["-"] e7["-"] e8["-"] e9["E"] e10["-"]
e11["-"] e12["E"] e13["-"] e14["-"] e15["-"] e16["-"] e17["-"] e18["-"] e19["E"] e20["-"]
e21["-"] e22["-"] e23["-"] e24["-"] e25["-"] e26["-"] e27["-"] e28["-"] e29["-"] e30["-"]
e31["-"] e32["-"] e33["-"] e34["-"] e35["-"] e36["-"]
space l1["-"] l2["-"] l3["-"] l4["-"] l5["L"] l6["L"] l7["-"] l8["-"] l9["-"] l10["-"]
l11["-"] l12["-"] l13["-"] l14["-"] l15["-"] l16["-"] l17["-"] l18["-"] l19["-"] l20["-"]
l21["-"] l22["-"] l23["-"] l24["L"] l25["-"] l26["-"] l27["-"] l28["-"] l29["-"] l30["-"]
l31["-"] l32["-"] l33["-"] l34["-"] l35["-"] l36["-"]
space g1["-"] g2["-"] g3["-"] g4["-"] g5["-"] g6["-"] g7["-"] g8["G"] g9["-"] g10["-"]
g11["-"] g12["-"] g13["-"] g14["-"] g15["-"] g16["-"] g17["-"] g18["-"] g19["-"] g20["-"]
g21["-"] g22["-"] g23["-"] g24["-"] g25["-"] g26["-"] g27["-"] g28["-"] g29["-"] g30["-"]
g31["-"] g32["-"] g33["-"] g34["-"] g35["-"] g36["-"]
space c1["-"] c2["-"] c3["-"] c4["-"] c5["-"] c6["-"] c7["-"] c8["-"] c9["-"] c10["-"]
c11["C"] c12["-"] c13["-"] c14["-"] c15["-"] c16["-"] c17["-"] c18["-"] c19["-"] c20["-"]
c21["-"] c22["-"] c23["-"] c24["-"] c25["-"] c26["-"] c27["-"] c28["-"] c29["-"] c30["-"]
c31["-"] c32["-"] c33["-"] c34["-"] c35["-"] c36["-"]
space sp1["-"] sp2["-"] sp3["-"] sp4["-"] sp5["-"] sp6["-"] sp7["-"] sp8["-"] sp9["-"] sp10["-"]
sp11["-"] sp12["-"] sp13[" "] sp14["-"] sp15["-"] sp16[" "] sp17["-"] sp18["-"] sp19["-"] sp20[" "]
sp21["-"] sp22["-"] sp23["-"] sp24["-"] sp25["-"] sp26["-"] sp27["-"] sp28[" "] sp29["-"] sp30["-"]
sp31[" "] sp32["-"] sp33["-"] sp34["-"] sp35["-"] sp36["-"]
row9["⋮"] s1["-"] s2["-"] s3["-"] s4["-"] s5["-"] s6["-"] s7["-"] s8["-"] s9["-"] s10["-"]
s11["-"] s12["-"] s13["-"] s14["-"] s15["S"] s16["-"] s17["-"] s18["-"] s19["-"] s20["-"]
s21["-"] s22["-"] s23["-"] s24["-"] s25["-"] s26["-"] s27["-"] s28["-"] s29["-"] s30["-"]
s31["-"] s32["-"] s33["-"] s34["-"] s35["-"] s36["-"]
space h1["-"] h2["-"] h3["-"] h4["-"] h5["-"] h6["-"] h7["-"] h8["-"] h9["-"] h10["-"]
h11["-"] h12["-"] h13["-"] h14["-"] h15["-"] h16["-"] h17["-"] h18["H"] h19["-"] h20["-"]
h21["-"] h22["-"] h23["-"] h24["-"] h25["-"] h26["-"] h27["-"] h28["-"] h29["-"] h30["-"]
h31["-"] h32["-"] h33["-"] h34["-"] h35["-"] h36["-"]
space a1["-"] a2["-"] a3["-"] a4["-"] a5["-"] a6["-"] a7["-"] a8["-"] a9["-"] a10["-"]
a11["-"] a12["-"] a13["-"] a14["-"] a15["-"] a16["-"] a17["-"] a18["-"] a19["-"] a20["-"]
a21["A"] a22["-"] a23["-"] a24["-"] a25["-"] a26["-"] a27["-"] a28["-"] a29["-"] a30["-"]
a31["-"] a32["A"] a33["-"] a34["A"] a35["-"] a36["-"]
space b1["-"] b2["-"] b3["-"] b4["-"] b5["-"] b6["-"] b7["-"] b8["-"] b9["-"] b10["-"]
b11["-"] b12["-"] b13["-"] b14["-"] b15["-"] b16["-"] b17["-"] b18["-"] b19["-"] b20["-"]
b21["-"] b22["B"] b23["-"] b24["-"] b25["-"] b26["-"] b27["-"] b28["-"] b29["-"] b30["-"]
b31["-"] b32["-"] b33["-"] b34["-"] b35["-"] b36["-"]
space y1["-"] y2["-"] y3["-"] y4["-"] y5["-"] y6["-"] y7["-"] y8["-"] y9["-"] y10["-"]
y11["-"] y12["-"] y13["-"] y14["-"] y15["-"] y16["-"] y17["-"] y18["-"] y19["-"] y20["-"]
y21["-"] y22["-"] y23["-"] y24["-"] y25["-"] y26["-"] y27["Y"] y28["-"] y29["-"] y30["-"]
y31["-"] y32["-"] y33["-"] y34["-"] y35["-"] y36["-"]
space o1["-"] o2["-"] o3["-"] o4["-"] o5["-"] o6["-"] o7["-"] o8["-"] o9["-"] o10["-"]
o11["-"] o12["-"] o13["-"] o14["-"] o15["-"] o16["-"] o17["-"] o18["-"] o19["-"] o20["-"]
o21["-"] o22["-"] o23["-"] o24["-"] o25["-"] o26["-"] o27["-"] o28["-"] o29["-"] o30["O"]
o31["-"] o32["-"] o33["-"] o34["-"] o35["-"] o36["-"]
space d1["-"] d2["-"] d3["-"] d4["-"] d5["-"] d6["-"] d7["-"] d8["-"] d9["-"] d10["-"]
d11["-"] d12["-"] d13["-"] d14["-"] d15["-"] d16["-"] d17["-"] d18["-"] d19["-"] d20["-"]
d21["-"] d22["-"] d23["-"] d24["-"] d25["-"] d26["-"] d27["-"] d28["-"] d29["-"] d30["-"]
d31["-"] d32["-"] d33["D"] d34["-"] d35["-"] d36["-"]
row16["m"] p1["-"] p2["-"] p3["-"] p4["-"] p5["-"] p6["-"] p7["-"] p8["-"] p9["-"] p10["-"]
p11["-"] p12["-"] p13["-"] p14["-"] p15["-"] p16["-"] p17["-"] p18["-"] p19["-"] p20["-"]
p21["-"] p22["-"] p23["-"] p24["-"] p25["-"] p26["-"] p27["-"] p28["-"] p29["-"] p30["-"]
p31["-"] p32["-"] p33["-"] p34["-"] p35["P"] p36["-"]
classDef c1 fill:#ff7f0e,color:#fff;
classDef c2 fill:#ffbb78,color:#000;
classDef c3 fill:#2ca02c,color:#fff;
classDef c4 fill:#98df8a,color:#000;
classDef c5 fill:#d62728,color:#fff;
classDef c6 fill:#ff9896,color:#000;
classDef c7 fill:#9467bd,color:#fff;
classDef c8 fill:#c5b0d5,color:#000;
classDef c9 fill:#8c564b,color:#fff;
classDef c10 fill:#c49c94,color:#000;
classDef c11 fill:#e377c2,color:#fff;
classDef c12 fill:#f7b6d2,color:#000;
classDef c13 fill:#bcbd22,color:#fff;
classDef c14 fill:#dbdb8d,color:#000;
classDef c15 fill:#17becf,color:#fff;
classDef c16 fill:#9edae5,color:#000;
classDef text fill:#fff,color:#000,stroke-width:0px
class row1,row2,row9,row16 text
class col1,col2,col19,col36 text
class diag text
class i2,i3,i4,i5,i6,i8,i9,i10 text
class i11,i12,i13,i15,i16,i17,i18,i19,i20 text
class i21,i22,i24,i26,i27,i28,i29,i30 text
class i31,i32,i33,i34,i35,i36 text
class n1,n3,n4,n5,n6,n7,n8,n9 text
class n11,n12,n13,n14,n15,n16,n17,n18,n19,n20 text
class n21,n22,n23,n24,n25,n26,n27,n28,n29,n30 text
class n31,n32,n33,n34,n35,n36 text
class t1,t2,t4,t5,t6,t7,t8,t9,t10 text
class t11,t12,t13,t14,t15,t16,t18,t19,t20 text
class t21,t22,t23,t24,t25,t27,t28,t30 text
class t31,t32,t33,t34,t35 text
class e1,e2,e3,e5,e6,e7,e8,e10 text
class e11,e13,e14,e15,e16,e17,e18,e20 text
class e21,e22,e23,e24,e25,e26,e27,e28,e29,e30 text
class e31,e32,e33,e34,e35,e36 text
class l1,l2,l3,l4,l7,l8,l9,l10 text
class l11,l12,l13,l14,l15,l16,l17,l18,l19,l20 text
class l21,l22,l23,l25,l26,l27,l28,l29,l30 text
class l31,l32,l33,l34,l35,l36 text
class g1,g2,g3,g4,g5,g6,g7,g9,g10 text
class g11,g12,g13,g14,g15,g16,g17,g18,g19,g20 text
class g21,g22,g23,g24,g25,g26,g27,g28,g29,g30 text
class g31,g32,g33,g34,g35,g36 text
class c1,c2,c3,c4,c5,c6,c7,c8,c9,c10 text
class c12,c13,c14,c15,c16,c17,c18,c19,c20 text
class c21,c22,c23,c24,c25,c26,c27,c28,c29,c30 text
class c31,c32,c33,c34,c35,c36 text
class sp1,sp2,sp3,sp4,sp5,sp6,sp7,sp8,sp9,sp10 text
class sp11,sp12,sp14,sp15,sp17,sp18,sp19 text
class sp21,sp22,sp23,sp24,sp25,sp26,sp27,sp28,sp29,sp30 text
class sp31,sp32,sp33,sp34,sp35,sp36 text
class s1,s2,s3,s4,s5,s6,s7,s8,s9,s10 text
class s11,s12,s13,s14,s16,s17,s18,s19,s20 text
class s21,s22,s23,s24,s25,s26,s27,s28,s29,s30 text
class s31,s32,s33,s34,s35,s36 text
class h1,h2,h3,h4,h5,h6,h7,h8,h9,h10 text
class h11,h12,h13,h14,h15,h16,h17,h19,h20 text
class h21,h22,h23,h24,h25,h26,h27,h28,h29,h30 text
class h31,h32,h33,h34,h35,h36 text
class a1,a2,a3,a4,a5,a6,a7,a8,a9,a10 text
class a11,a12,a13,a14,a15,a16,a17,a18,a19,a20 text
class a22,a23,a24,a25,a26,a27,a28,a29,a30 text
class a31,a33,a35,a36 text
class b1,b2,b3,b4,b5,b6,b7,b8,b9,b10 text
class b11,b12,b13,b14,b15,b16,b17,b18,b19,b20 text
class b21,b23,b24,b25,b26,b27,b28,b29,b30 text
class b31,b32,b33,b34,b35,b36 text
class y1,y2,y3,y4,y5,y6,y7,y8,y9,y10 text
class y11,y12,y13,y14,y15,y16,y17,y18,y19,y20 text
class y21,y22,y23,y24,y25,y26,y28,y29,y30 text
class y31,y32,y33,y34,y35,y36 text
class o1,o2,o3,o4,o5,o6,o7,o8,o9,o10 text
class o11,o12,o13,o14,o15,o16,o17,o18,o19,o20 text
class o21,o22,o23,o24,o25,o26,o27,o28,o29 text
class o31,o32,o33,o34,o35,o36 text
class d1,d2,d3,d4,d5,d6,d7,d8,d9,d10 text
class d11,d12,d13,d14,d15,d16,d17,d18,d19,d20 text
class d21,d22,d23,d24,d25,d26,d27,d28,d29,d30 text
class d31,d32,d34,d35,d36 text
class p1,p2,p3,p4,p5,p6,p7,p8,p9,p10 text
class p11,p12,p13,p14,p15,p16,p17,p18,p19,p20 text
class p21,p22,p23,p24,p25,p26,p27,p28,p29,p30 text
class p31,p32,p33,p34,p36 text
class seq1,seq7,seq14,seq23,seq25,i1,i7,i14,i23,i25 c1
class seq2,seq10,n2,n10 c2
class seq3,seq17,seq26,seq29,seq36,t3,t17,t26,t29,t36 c3
class seq4,seq9,seq12,seq19,e4,e9,e12,e19 c4
class seq5,seq6,seq24,l5,l6,l24 c5
class seq8,g8 c6
class seq11,c11 c7
class seq13,seq16,seq20,seq28,seq31,sp13,sp16,sp20,sp28,sp31 c8
class seq15,s15 c9
class seq18,h18 c10
class seq21,seq32,seq34,a21,a32,a34 c11
class seq22,b22 c12
class seq27,y27 c13
class seq30,o30 c14
class seq33,d33 c15
class seq35,p35 c16
Applying operations to Congeneric sequences and its derivatives produces Congenerics Orders, Congenerics Intervals Chains, Congenerics Intervals Distributions and finally Characteristics specific for congeneric matrix.