Congeneric Orders
Congeneric orders is a stack of a compatible congeric orders that represents Order or Partial Order. The congeneric orders are sorted in the stack by the first position with a non-empty element in it.
block-beta
columns 30
space i1["1"] i2["2"] i3["3"] i4["4"] i5["5"] i6["6"] i7["7"] i8["8"] i9["9"] i10["10"] i11["11"] i12["12"]
i13["13"] i14["14"] i15["15"] i16["16"] i17["17"] i18["18"] i19["19"] i20["20"]
i21["21"] i22["22"] i23["23"] i24["24"] i25["25"] i26["26"] i27["27"]
i28["28"] i29["29"]
j1["1"] s1["1"] s2["-"] s3["-"] s4["-"] s5["-"] s6["-"] s7["1"] s8["-"] s9["-"] s10["-"]
s11["-"] s12["-"] s13["-"] s14["-"] s15["-"] s16["-"] s17["-"] s18["-"] s19["-"] s20["-"]
s21["-"] s22["-"] s23["-"] s24["-"] s25["-"] s26["-"] s27["-"] s28["-"] s29["-"]
j2["2"] n1["-"] n2["1"] n3["-"] n4["-"] n5["-"] n6["-"] n7["-"] n8["-"] n9["-"] n10["1"]
n11["-"] n12["-"] n13["-"] n14["-"] n15["-"] n16["-"] n17["-"] n18["-"] n19["-"] n20["-"]
n21["-"] n22["-"] n23["-"] n24["-"] n25["-"] n26["-"] n27["-"] n28["-"] n29["-"]
j3["3"] t1["-"] t2["-"] t3["1"] t4["-"] t5["-"] t6["-"] t7["-"] t8["-"] t9["-"] t10["-"]
t11["-"] t12["-"] t13["-"] t14["-"] t15["-"] t16["-"] t17["1"] t18["-"] t19["-"] t20["-"]
t21["-"] t22["-"] t23["-"] t24["-"] t25["-"] t26["1"] t27["-"] t28["-"] t29["1"]
j4["4"] e1["-"] e2["-"] e3["-"] e4["1"] e5["-"] e6["-"] e7["-"] e8["-"] e9["1"] e10["-"]
e11["-"] e12["1"] e13["-"] e14["-"] e15["-"] e16["-"] e17["-"] e18["-"] e19["-"] e20["-"]
e21["-"] e22["-"] e23["-"] e24["-"] e25["-"] e26["-"] e27["-"] e28["-"] e29["-"]
j5["5"] l1["-"] l2["-"] l3["-"] l4["-"] l5["1"] l6["1"] l7["-"] l8["-"] l9["-"] l10["-"]
l11["-"] l12["-"] l13["-"] l14["-"] l15["-"] l16["-"] l17["-"] l18["-"] l19["-"] l20["-"]
l21["-"] l22["-"] l23["-"] l24["1"] l25["-"] l26["-"] l27["-"] l28["-"] l29["-"]
j6["6"] g1["-"] g2["-"] g3["-"] g4["-"] g5["-"] g6["-"] g7["-"] g8["1"] g9["-"] g10["-"]
g11["-"] g12["-"] g13["-"] g14["-"] g15["-"] g16["-"] g17["-"] g18["-"] g19["-"] g20["-"]
g21["-"] g22["-"] g23["-"] g24["-"] g25["-"] g26["-"] g27["-"] g28["-"] g29["-"]
j7["7"] c1["-"] c2["-"] c3["-"] c4["-"] c5["-"] c6["-"] c7["-"] c8["-"] c9["-"] c10["-"]
c11["1"] c12["-"] c13["-"] c14["-"] c15["-"] c16["-"] c17["-"] c18["-"] c19["-"] c20["-"]
c21["-"] c22["-"] c23["-"] c24["-"] c25["-"] c26["-"] c27["-"] c28["-"] c29["-"]
j8["8"] sp1["-"] sp2["-"] sp3["-"] sp4["-"] sp5["-"] sp6["-"] sp7["-"] sp8["-"] sp9["-"] sp10["-"]
sp11["-"] sp12["-"] sp13["1"] sp14["-"] sp15["-"] sp16["1"] sp17["-"] sp18["-"] sp19["-"] sp20["1"]
sp21["-"] sp22["-"] sp23["-"] sp24["-"] sp25["-"] sp26["-"] sp27["-"] sp28["-"] sp29["-"]
j9["9"] b1["-"] b2["-"] b3["-"] b4["-"] b5["-"] b6["-"] b7["-"] b8["-"] b9["-"] b10["-"]
b11["-"] b12["-"] b13["-"] b14["-"] b15["-"] b16["-"] b17["-"] b18["-"] b19["-"] b20["-"]
b21["-"] b22["1"] b23["-"] b24["-"] b25["-"] b26["-"] b27["-"] b28["-"] b29["-"]
classDef c1 fill:#ff7f0e,color:#fff;
classDef c2 fill:#ffbb78,color:#000;
classDef c3 fill:#2ca02c,color:#fff;
classDef c4 fill:#98df8a,color:#000;
classDef c5 fill:#d62728,color:#fff;
classDef c6 fill:#ff9896,color:#000;
classDef c7 fill:#9467bd,color:#fff;
classDef c8 fill:#c5b0d5,color:#000;
classDef c9 fill:#8c564b,color:#fff;
classDef c10 fill:#c49c94,color:#000;
classDef c11 fill:#e377c2,color:#fff;
classDef c12 fill:#f7b6d2,color:#000;
classDef c13 fill:#bcbd22,color:#fff;
classDef c14 fill:#dbdb8d,color:#000;
classDef c15 fill:#17becf,color:#fff;
classDef c16 fill:#9edae5,color:#000;
classDef skip fill:#ffffff
classDef index fill:#ffffff,stroke-width:0px
class s2,s3,s4,s5,s6,s8,s9,s10 index
class s11,s12,s13,s14,s15,s16,s17,s18,s19,s20 index
class s21,s22,s23,s24,s25,s26,s27,s28,s29 index
class n1,n3,n4,n5,n6,n7,n8,n9 index
class n11,n12,n13,n14,n15,n16,n17,n18,n19,n20 index
class n21,n22,n23,n24,n25,n26,n27,n28,n29 index
class t1,t2,t4,t5,t6,t7,t8,t9,t10 index
class t11,t12,t13,t14,t15,t16,t18,t19,t20 index
class t21,t22,t23,t24,t25,t27,t28 index
class e1,e2,e3,e5,e6,e7,e8,e10 index
class e11,e13,e14,e15,e16,e17,e18,e19,e20 index
class e21,e22,e23,e24,e25,e26,e27,e28,e29 index
class l1,l2,l3,l4,l7,l8,l9,l10 index
class l11,l12,l13,l14,l15,l16,l17,l18,l19,l20 index
class l21,l22,l23,l25,l26,l27,l28,l29 index
class g1,g2,g3,g4,g5,g6,g7,g9,g10 index
class g11,g12,g13,g14,g15,g16,g17,g18,g19,g20 index
class g21,g22,g23,g24,g25,g26,g27,g28,g29 index
class c1,c2,c3,c4,c5,c6,c7,c8,c9,c10 index
class c12,c13,c14,c15,c16,c17,c18,c19,c20 index
class c21,c22,c23,c24,c25,c26,c27,c28,c29 index
class sp1,sp2,sp3,sp4,sp5,sp6,sp7,sp8,sp9,sp10 index
class sp11,sp12,sp14,sp15,sp17,sp18,sp19 index
class sp21,sp22,sp23,sp24,sp25,sp26,sp27,sp28,sp29 index
class b1,b2,b3,b4,b5,b6,b7,b8,b9,b10 index
class b11,b12,b13,b14,b15,b16,b17,b18,b19,b20 index
class b21,b23,b24,b25,b26,b27,b28,b29 index
class i1,i2,i3,i4,i5,i6,i7,i8,i9,i10 index
class i11,i12,i13,i14,i15,i16,i17,i18,i19,i20 index
class i21,i22,i23,i24,i25,i26,i27,i28,i29 index
class j1,j2,j3,j4,j5,j6,j7,j8,j9 index
Mathematical Definition
Let \(X_{-}\) is Partial Carrier set
Let \(O_{c}\) is Congeneric Order
Define a Congeric orders
as m-tuple of congeneric order
Let \(compatible(O1_c, O2_c)\) is compatibility of Partial Sequences function
\(CO\) is m-tuple of \(O_c\) orders
all congeneric orders are compatible
and sorted by first apperance of non-empty element
where:
- \(co_j\) is called the \(j\)-th congeneric order.
- \(l := |CO(1)|\) is length, \(l \in N\)
- \(m := |CO|\) is power, \(m \in N\)
as matrix (m,l)
\(CO\) is (m,l) matrix of \(\{-, 1\}\)
columns are compatible
and sorted by first apperance of non-empty element
where:
- \(co_j\) is called the \(j\)-th congeneric order or \(j\)-th _row.
- \(co_{j,i}\) is called the \(i\)-th element of \(j\)-th congeneric order.
- \(l\) is length, \(l \in N\)
- \(m\) is power, \(m \in N\)
from Order
Let \(O_p\) is Partial Order defined as function
Define
from Congeneric Sequences
Let \(CS\) is Congeneric Sequences - (m,l) matrix of \(X_{-}\)
Define
Congeneric Orders product Alphabet
Let \(X_{-}\) is a Parial carrier set
Let \(A\) is a Aphabet \(A : \{1, ..., m\} \longrightarrow X,\)
Let \(alphabet_p\) is Alphabet of Partial Sequence function
Let \(CS\) is a Congeneric Sequeneces
the following equations are true