Bounded Intervals Chain
A bounded intervals chain is an intervals chain produced with Bounded Binding.
Bounded Binding treats a sequence as a finite and uses \(0\) and \(n+1\) positions (depedns of Iterator direction)
as corresponding position anytime there is no next matching element.
The approach simplifies implementation functions and enables obtaining binding direction based on a given bounded intervals chain due to its specific properties.
This comes with a cost of the intervals' consistency that depends on binding direction and leads to different measure values.
Bounded Binding identifies Start and End directions.
block-beta
columns 8
p0["0"] p1["1"] space:3 p5["5"] p6["n"] space
inf["⊥"] s1["A"] s2["C"] s3["T"] s4["C"] s5["A"] s6["G"] space
e0["0 = Iterator(1)"]:2 space:6
space t1["1 = Iterator(5)"]:5 space:2
classDef imaginary fill:#526cfe09,color:#000,stroke-dasharray: 10 5;
classDef position fill:#fff,color:#000,stroke-width:0px;
class inf,sup imaginary
class p0,p1,p5,p6,p7 position
classDef c1 fill:#ff7f0e,color:#fff;
classDef c2 fill:#ffbb78,color:#000;
classDef c2a fill:#ffbb788a,color:#000;
classDef c3 fill:#2ca02c,color:#fff;
classDef c4 fill:#98df8a,color:#000;
classDef c4a fill:#98df8a8a,color:#000;
classDef c5 fill:#d62728,color:#fff;
classDef c6 fill:#ff9896,color:#000;
classDef c6a fill:#ff98968a,color:#000;
classDef c7 fill:#9467bd,color:#fff;
classDef c8 fill:#c5b0d5,color:#000;
classDef c9 fill:#8c564b,color:#fff;
classDef c10 fill:#c49c94,color:#000;
classDef c11 fill:#e377c2,color:#fff;
classDef c12 fill:#f7b6d2,color:#000;
classDef c13 fill:#bcbd22,color:#fff;
classDef c14 fill:#dbdb8d,color:#000;
classDef c14a fill:#dbdb8d8a,color:#000;
classDef c15 fill:#17becf,color:#fff;
classDef c16 fill:#9edae5,color:#000;
class s1,s5 c4
class inf,t1,e0 c4a
class pomn,p00,p01,p06,p07,p02n position
class t1,t2,t5,e0,e1 position
block-beta
columns 8
space p1["1"] space:3 p5["5"] p6["n"] p7["n + 1"]
space s1["A"] s2["C"] s3["T"] s4["C"] s5["A"] s6["G"] sup["⊥"]
space t1["Iterator(1) = 5"]:5 space:2
space:5 e0["Iterator(5) = n+1"]:3
classDef imaginary fill:#526cfe09,color:#000,stroke-dasharray: 10 5;
classDef position fill:#fff,color:#000,stroke-width:0px;
class inf,sup imaginary
class p0,p1,p5,p6,p7 position
classDef c1 fill:#ff7f0e,color:#fff;
classDef c2 fill:#ffbb78,color:#000;
classDef c2a fill:#ffbb788a,color:#000;
classDef c3 fill:#2ca02c,color:#fff;
classDef c4 fill:#98df8a,color:#000;
classDef c4a fill:#98df8a8a,color:#000;
classDef c5 fill:#d62728,color:#fff;
classDef c6 fill:#ff9896,color:#000;
classDef c6a fill:#ff98968a,color:#000;
classDef c7 fill:#9467bd,color:#fff;
classDef c8 fill:#c5b0d5,color:#000;
classDef c9 fill:#8c564b,color:#fff;
classDef c10 fill:#c49c94,color:#000;
classDef c11 fill:#e377c2,color:#fff;
classDef c12 fill:#f7b6d2,color:#000;
classDef c13 fill:#bcbd22,color:#fff;
classDef c14 fill:#dbdb8d,color:#000;
classDef c14a fill:#dbdb8d8a,color:#000;
classDef c15 fill:#17becf,color:#fff;
classDef c16 fill:#9edae5,color:#000;
class s1,s5 c4
class sup,t1,e0 c4a
class pomn,p00,p01,p06,p07,p02n position
class t1,t2,t5,e0,e1 position
Mathematical Definition
Let \(X\) is Carrier set
Let \(S\) is Sequence length of \(n\) described as function \(S : \{1,...,n\} \longrightarrow X\)
Let \(Binding\) is Binding
Define Bindings
Define a set of terminal values - \(\bot = \{0\}\)
Let \(R : \{1,...,n\} \longrightarrow \{1,...,n\} \cup \bot,\) is a corresponding references
Define
Define a set of terminal values - \(\bot = \{n+1\}\)
Let \(R : \{1,...,n\} \longrightarrow \{1,...,n\} \cup \bot,\) is a corresponding references
Define
Define Intervals Chain
Define
Where:
- \(n := |IC|\) is called length of the intervals chained, \(n \in N\)
- \(\Delta_i\) is called the \(i\)-th element (or interval) of the intervals chained
Define
Where:
- \(n := |IC|\) is called length of the intervals chained, \(n \in N\)
- \(\Delta_i\) is called the \(i\)-th element (or interval) of the intervals chained
Special properties
Intervals chain \(IC\) have been calculated with Bounded binding have a special properties
Let \(B = \{Start, End\} \subset \{Binding\}\) is set of Bounded Binding