Skip to content

Bounded Intervals Chain

A bounded intervals chain is an intervals chain produced with Bounded Binding. Bounded Binding treats a sequence as a finite and uses \(0\) and \(n+1\) positions (depedns of Iterator direction) as corresponding position anytime there is no next matching element. The approach simplifies implementation functions and enables obtaining binding direction based on a given bounded intervals chain due to its specific properties. This comes with a cost of the intervals' consistency that depends on binding direction and leads to different measure values. Bounded Binding identifies Start and End directions.

block-beta
  columns 8
  p0["0"]        p1["1"] space:3         p5["5"]                p6["n"] space
  inf["⊥"] s1["A"] s2["C"] s3["T"] s4["C"] s5["A"] s6["G"] space
  e0["0 = Iterator(1)"]:2 space:6
  space      t1["1 = Iterator(5)"]:5         space:2

  classDef imaginary fill:#526cfe09,color:#000,stroke-dasharray: 10 5;
  classDef position fill:#fff,color:#000,stroke-width:0px;
  class inf,sup imaginary
  class p0,p1,p5,p6,p7 position

  classDef c1 fill:#ff7f0e,color:#fff;
  classDef c2 fill:#ffbb78,color:#000;
  classDef c2a fill:#ffbb788a,color:#000;
  classDef c3 fill:#2ca02c,color:#fff;
  classDef c4 fill:#98df8a,color:#000;
  classDef c4a fill:#98df8a8a,color:#000;
  classDef c5 fill:#d62728,color:#fff;
  classDef c6 fill:#ff9896,color:#000;
  classDef c6a fill:#ff98968a,color:#000;
  classDef c7 fill:#9467bd,color:#fff;
  classDef c8 fill:#c5b0d5,color:#000;
  classDef c9 fill:#8c564b,color:#fff;
  classDef c10 fill:#c49c94,color:#000;
  classDef c11 fill:#e377c2,color:#fff;
  classDef c12 fill:#f7b6d2,color:#000;
  classDef c13 fill:#bcbd22,color:#fff;
  classDef c14 fill:#dbdb8d,color:#000;
  classDef c14a fill:#dbdb8d8a,color:#000;
  classDef c15 fill:#17becf,color:#fff;
  classDef c16 fill:#9edae5,color:#000;

  class s1,s5 c4
  class inf,t1,e0 c4a
  class pomn,p00,p01,p06,p07,p02n position
  class t1,t2,t5,e0,e1 position
block-beta
  columns 8
  space        p1["1"] space:3         p5["5"]                p6["n"] p7["n + 1"]
  space s1["A"] s2["C"] s3["T"] s4["C"] s5["A"] s6["G"] sup["⊥"]
  space      t1["Iterator(1) = 5"]:5         space:2
  space:5 e0["Iterator(5) = n+1"]:3

  classDef imaginary fill:#526cfe09,color:#000,stroke-dasharray: 10 5;
  classDef position fill:#fff,color:#000,stroke-width:0px;
  class inf,sup imaginary
  class p0,p1,p5,p6,p7 position

  classDef c1 fill:#ff7f0e,color:#fff;
  classDef c2 fill:#ffbb78,color:#000;
  classDef c2a fill:#ffbb788a,color:#000;
  classDef c3 fill:#2ca02c,color:#fff;
  classDef c4 fill:#98df8a,color:#000;
  classDef c4a fill:#98df8a8a,color:#000;
  classDef c5 fill:#d62728,color:#fff;
  classDef c6 fill:#ff9896,color:#000;
  classDef c6a fill:#ff98968a,color:#000;
  classDef c7 fill:#9467bd,color:#fff;
  classDef c8 fill:#c5b0d5,color:#000;
  classDef c9 fill:#8c564b,color:#fff;
  classDef c10 fill:#c49c94,color:#000;
  classDef c11 fill:#e377c2,color:#fff;
  classDef c12 fill:#f7b6d2,color:#000;
  classDef c13 fill:#bcbd22,color:#fff;
  classDef c14 fill:#dbdb8d,color:#000;
  classDef c14a fill:#dbdb8d8a,color:#000;
  classDef c15 fill:#17becf,color:#fff;
  classDef c16 fill:#9edae5,color:#000;

  class s1,s5 c4
  class sup,t1,e0 c4a
  class pomn,p00,p01,p06,p07,p02n position
  class t1,t2,t5,e0,e1 position

Mathematical Definition

Let \(X\) is Carrier set

Let \(S\) is Sequence length of \(n\) described as function \(S : \{1,...,n\} \longrightarrow X\)

Let \(Binding\) is Binding

Define Bindings

Define a set of terminal values - \(\bot = \{0\}\)

Let \(R : \{1,...,n\} \longrightarrow \{1,...,n\} \cup \bot,\) is a corresponding references

Define

\[Iterator : \big\{ S \big\} \longrightarrow \big\{ R \big\},\]
\[Iterator(S)(i) = \Bigg\{\begin{array}{l} max \big\{j \in \{1,...,i\}\big|S(j) = S(i) \land j \ne i \big\} & if \ exists \\ 0 & otherwise \end{array}\]
\[Start = <Iterator, \bot> \in \{Binding\}\]
\[\exists Start^{-1} = <Iterator^{-1}, \bot> \in \{Binding^{-1}\},\]
\[Iterator^{-1} : \big\{ R \big\} \longrightarrow \big\{ \{1,...,n\} \longrightarrow \{1,...,m\} | m \leq n \big\}\]
\[Iterator^{-1}(R)(i) = \Bigg\{\begin{array}{l} \Big|<j \in \{1,...i\} | R(j) \in \bot >\Big|, & \ R(i) \in \bot \\ Iterator^{-1}(R, R(i)), & R(i) \in \{1,...,n\} \end{array}\]
\[Iterator(S) = Iterator(Iterator^{-1}(Iterator(S)))\]

Define a set of terminal values - \(\bot = \{n+1\}\)

Let \(R : \{1,...,n\} \longrightarrow \{1,...,n\} \cup \bot,\) is a corresponding references

Define

\[Iterator : \big\{ S \big\} \longrightarrow \big\{ R \big\},\]
\[Iterator(S)(i) = \Bigg\{\begin{array}{l} min \big\{j \in \{i,...,n\}\big|S(j) = S(i) \land j \ne i \big\} & if \ exists \\ n+1 & otherwise \end{array}\]
\[End = <Iterator, \bot> \in \{Binding\}\]
\[\exists End^{-1} = <Iterator^{-1}, \bot> \in \{Binding^{-1}\},\]
\[Iterator^{-1} : \big\{ R \big\} \longrightarrow \big\{ \{1,...,n\} \longrightarrow \{1,...,m\} | m \leq n \big\}\]
\[Iterator^{-1}(R)(i) = \Bigg\{\begin{array}{l} \Big|<j \in \{i,...n\} | R(j) \in \bot >\Big|, & \ R(i) \in \bot \\ Iterator^{-1}(R, R(i)), & R(i) \in \{1,...,n\} \end{array}\]
\[Iterator(S) = Iterator(Iterator^{-1}(Iterator(S)))\]

Define Intervals Chain

Define

\[IC = <\Delta_1, \Delta_2, ..., \Delta_n> | \forall j \in \{1,...,n\} \exists \Delta_j \in \{1,...,n\},\]
\[\exists \ Intervals : \big\{S\} \longrightarrow \big\{ IC \big\},\]
\[Intervals(S)(i) = | i - Iterator(S)(i)|,\]
\[\exists \ Follow : \big\{ IC \big\} \longrightarrow \big\{ R \big\},\]
\[Follow(IC)(i) = i - IC(i),\]
\[\exists Intervals^{-1} : \big\{ IC \big\} \longrightarrow \big\{ \{1,...,n\} \longrightarrow \{1,...,m\} | m \leq n \big\},\]
\[Intervals^{-1}(IC)(i) = Iterator^{-1}(Follow(IC))(i),\]
\[Intervals(S) = Intervals(Intervals^{-1}(Intervals(S)))\]
\[\exists Trace : \big\{ IC \big\} \longrightarrow \big\{ R \big\}\]
\[Trace(IC)(i) = \Bigg\{\begin{array}{l} i, & \ i \in \bot \\ Trace\big(IC\big)\big(Follow(IC, i)\big) & i \in \{1,...,n\} \end{array}\]

Where:

  • \(n := |IC|\) is called length of the intervals chained, \(n \in N\)
  • \(\Delta_i\)​ is called the \(i\)-th element (or interval) of the intervals chained

Define

\[IC = <\Delta_1, \Delta_2, ..., \Delta_n> | \forall j \in \{1,...,n\} \exists \Delta_j \in \{1,...,n\},\]
\[\exists \ Intervals : \big\{S\} \longrightarrow \big\{ IC \big\},\]
\[Intervals(S)(i) = | i - Iterator(S)(i)|,\]
\[\exists \ Follow : \big\{ IC \big\} \longrightarrow \big\{ R \big\},\]
\[Follow(IC)(i) = i + IC(i),\]
\[\exists Intervals^{-1} : \big\{ IC \big\} \longrightarrow \big\{ \{1,...,n\} \longrightarrow \{1,...,m\} | m \leq n \big\},\]
\[Intervals^{-1}(IC)(i) = Iterator^{-1}(Follow(IC))(i),\]
\[Intervals(S) = Intervals(Intervals^{-1}(Intervals(S)))\]
\[\exists Trace : \big\{ IC \big\} \longrightarrow \big\{ R \big\}\]
\[Trace(IC)(i) = \Bigg\{\begin{array}{l} i, & \ i \in \bot \\ Trace\big(IC\big)\big(Follow(IC, i)\big) & i \in \{1,...,n\} \end{array}\]

Where:

  • \(n := |IC|\) is called length of the intervals chained, \(n \in N\)
  • \(\Delta_i\)​ is called the \(i\)-th element (or interval) of the intervals chained

Special properties

Intervals chain \(IC\) have been calculated with Bounded binding have a special properties

\[IC(1) = 1\]
\[IC(i) \le i | \forall i \in \{1,...,n\}\]
\[Follow(IC)(i) <> Follow(IC)(j) \lor Follow(IC)(i) \in \bot | \forall i != j\]
\[Trace(IC)(i) = 0 | \forall i \in \{1,...,n\}\]
\[IC(n) = 1\]
\[IC(i) \le n - i | \forall i \in \{1,...,n\}\]
\[Follow(IC)(i) <> Follow(IC)(j) \lor Follow(IC)(i) \in \bot | \forall i != j\]
\[Trace(IC)(i) = n + 1 | \forall i \in \{1,...,n\}\]

Let \(B = \{Start, End\} \subset \{Binding\}\) is set of Bounded Binding