Cycled Intervals Chain
A cycled intervals chain is an intervals chain produced with Cycled Binding. Cycled Binding treats a sequence as a subsequence representing an infinite sequence.
The approach alignged with Representativeness heuristic idea, connects FOA with Necklace problem and makes intervals based measures indeferent to binding direction.
Cycled Binding identifies Start and End directions.
Cycled Binding extends the sequence by copying itself as a prefix and suffix. This is enough to mock it as a cycled sequence (also known as a periodic sequence or an orbit) and use the prefix and suffix to find the corresponding position for the element in edge cases.
block-beta
columns 18
pomn["-n+1"] space:4 p00["0"] p01["1"] space:4 p06["n"] p07["n + 1"] space:4 p02n["n + n"]
p1["A"] p2["C"] p3["T"] p4["C"] p5["A"] p6["G"] s1["A"] s2["C"] s3["T"] s4["C"] s5["A"] s6["G"] f1["A"] f2["C"] f3["T"] f4["C"] f5["A"] f6["G"]
space:5 ia1["2"]:2 space:11
space:4 ic1["4"]:4 space:10
space:3 it1["6"]:6 space:9
space:6 ig1["6"]:6 space:6
classDef imaginary fill:#526cfe09,color:#000,stroke-dasharray: 10 5;
classDef position fill:#fff,color:#000,stroke-width:0px;
classDef c1 fill:#ff7f0e,color:#fff;
classDef c2 fill:#ffbb78,color:#000;
classDef c2a fill:#ffbb788a,color:#000;
classDef c3 fill:#2ca02c,color:#fff;
classDef c4 fill:#98df8a,color:#000;
classDef c4a fill:#98df8a8a,color:#000;
classDef c5 fill:#d62728,color:#fff;
classDef c6 fill:#ff9896,color:#000;
classDef c6a fill:#ff98968a,color:#000;
classDef c7 fill:#9467bd,color:#fff;
classDef c8 fill:#c5b0d5,color:#000;
classDef c9 fill:#8c564b,color:#fff;
classDef c10 fill:#c49c94,color:#000;
classDef c11 fill:#e377c2,color:#fff;
classDef c12 fill:#f7b6d2,color:#000;
classDef c13 fill:#bcbd22,color:#fff;
classDef c14 fill:#dbdb8d,color:#000;
classDef c14a fill:#dbdb8d8a,color:#000;
classDef c15 fill:#17becf,color:#fff;
classDef c16 fill:#9edae5,color:#000;
class s1,ia1 c2
class p5 c2a
class s2,ic1 c4
class p4 c4a
class s3,it1 c6
class p3 c6a
class s6,ig1 c14
class p6 c14a
class p1,p2,p3,p4,p5,p6,p7,p8,p9,f1,f2,f3,f4,f5,f6,f7,f8,f9 imaginary
class pomn,p00,p01,p06,p07,p02n position
block-beta
columns 18
pomn["-n+1"] space:4 p00["0"] p01["1"] space:4 p06["n"] p07["n + 1"] space:4 p02n["n + n"]
p1["A"] p2["C"] p3["T"] p4["C"] p5["A"] p6["G"] s1["A"] s2["C"] s3["T"] s4["C"] s5["A"] s6["G"] f1["A"] f2["C"] f3["T"] f4["C"] f5["A"] f6["G"]
space:10 ia1["2"]:2 space:6
space:9 ic1["4"]:4 space:5
space:8 it1["6"]:6 space:5
space:10 ig1["6"]:6 space:1
classDef imaginary fill:#526cfe09,color:#000,stroke-dasharray: 10 5;
classDef position fill:#fff,color:#000,stroke-width:0px;
classDef c1 fill:#ff7f0e,color:#fff;
classDef c2 fill:#ffbb78,color:#000;
classDef c2a fill:#ffbb788a,color:#000;
classDef c3 fill:#2ca02c,color:#fff;
classDef c4 fill:#98df8a,color:#000;
classDef c4a fill:#98df8a8a,color:#000;
classDef c5 fill:#d62728,color:#fff;
classDef c6 fill:#ff9896,color:#000;
classDef c6a fill:#ff98968a,color:#000;
classDef c7 fill:#9467bd,color:#fff;
classDef c8 fill:#c5b0d5,color:#000;
classDef c9 fill:#8c564b,color:#fff;
classDef c10 fill:#c49c94,color:#000;
classDef c11 fill:#e377c2,color:#fff;
classDef c12 fill:#f7b6d2,color:#000;
classDef c13 fill:#bcbd22,color:#fff;
classDef c14 fill:#dbdb8d,color:#000;
classDef c14a fill:#dbdb8d8a,color:#000;
classDef c15 fill:#17becf,color:#fff;
classDef c16 fill:#9edae5,color:#000;
class s5,ia1 c2
class f1 c2a
class s4,ic1 c4
class f2 c4a
class s3,it1 c6
class f3 c6a
class s6,ig1 c14
class f6 c14a
class p1,p2,p3,p4,p5,p6,p7,p8,p9,f1,f2,f3,f4,f5,f6,f7,f8,f9 imaginary
class pomn,p00,p01,p06,p07,p02n position
Mathematical Definition
Let \(X\) is Carrier set
Let \(S\) is Sequence length of \(n\) described as function \(S : \{1,...,n\} \longrightarrow X\)
Let \(Binding\) is Binding
Let \(S_{cycled} : \big\{ \{1,...,n\} \longrightarrow X \big\} \longrightarrow \big\{ Z \longrightarrow X \big\}\) is a cycled sequence
Define Bindings
Define a set of terminal values - \(\bot = \{-n+1,...,0\}\)
Let \(R : \{1,...,n\} \longrightarrow \{1,...,n\} \cup \bot,\) is a corresponding references
Define
Define a set of terminal values - \(\bot = \{n+1,...,2n\}\)
Let \(R : \{1,...,n\} \longrightarrow \{1,...,n\} \cup \bot,\) is a corresponding references
Define
Define Intervals Chain
Define
Where:
- \(n := |IC|\) is called length of the intervals chained, \(n \in N\)
- \(\Delta_i\) is called the \(i\)-th element (or interval) of the intervals chained
Define
Where:
- \(n := |IC|\) is called length of the intervals chained, \(n \in N\)
- \(\Delta_i\) is called the \(i\)-th element (or interval) of the intervals chained
Special properties
Intervals chain \(IC\) have been calculated with Bounded binding have a special properties
Let \(B = \{Start, End\} \subset \{Binding\}\) is set of Cycled Binding