Skip to content

Cycled Intervals Chain

A cycled intervals chain is an intervals chain produced with Cycled Binding. Cycled Binding treats a sequence as a subsequence representing an infinite sequence.

The approach alignged with Representativeness heuristic idea, connects FOA with Necklace problem and makes intervals based measures indeferent to binding direction.

Cycled Binding identifies Start and End directions.

Cycled Binding extends the sequence by copying itself as a prefix and suffix. This is enough to mock it as a cycled sequence (also known as a periodic sequence or an orbit) and use the prefix and suffix to find the corresponding position for the element in edge cases.

block-beta
  columns 18
  pomn["-n+1"]    space:4  p00["0"]    p01["1"] space:4                                     p06["n"] p07["n + 1"]  space:4 p02n["n + n"]
  p1["A"] p2["C"] p3["T"] p4["C"] p5["A"] p6["G"] s1["A"] s2["C"] s3["T"] s4["C"] s5["A"] s6["G"] f1["A"] f2["C"] f3["T"] f4["C"] f5["A"] f6["G"]
  space:5 ia1["2"]:2 space:11
  space:4 ic1["4"]:4 space:10
  space:3 it1["6"]:6 space:9
  space:6 ig1["6"]:6 space:6

  classDef imaginary fill:#526cfe09,color:#000,stroke-dasharray: 10 5;
  classDef position fill:#fff,color:#000,stroke-width:0px;

  classDef c1 fill:#ff7f0e,color:#fff;
  classDef c2 fill:#ffbb78,color:#000;
  classDef c2a fill:#ffbb788a,color:#000;
  classDef c3 fill:#2ca02c,color:#fff;
  classDef c4 fill:#98df8a,color:#000;
  classDef c4a fill:#98df8a8a,color:#000;
  classDef c5 fill:#d62728,color:#fff;
  classDef c6 fill:#ff9896,color:#000;
  classDef c6a fill:#ff98968a,color:#000;
  classDef c7 fill:#9467bd,color:#fff;
  classDef c8 fill:#c5b0d5,color:#000;
  classDef c9 fill:#8c564b,color:#fff;
  classDef c10 fill:#c49c94,color:#000;
  classDef c11 fill:#e377c2,color:#fff;
  classDef c12 fill:#f7b6d2,color:#000;
  classDef c13 fill:#bcbd22,color:#fff;
  classDef c14 fill:#dbdb8d,color:#000;
  classDef c14a fill:#dbdb8d8a,color:#000;
  classDef c15 fill:#17becf,color:#fff;
  classDef c16 fill:#9edae5,color:#000;

  class s1,ia1 c2
  class p5 c2a
  class s2,ic1 c4
  class p4 c4a
  class s3,it1 c6
  class p3 c6a
  class s6,ig1 c14
  class p6 c14a
  class p1,p2,p3,p4,p5,p6,p7,p8,p9,f1,f2,f3,f4,f5,f6,f7,f8,f9 imaginary
  class pomn,p00,p01,p06,p07,p02n position
block-beta
  columns 18
  pomn["-n+1"]    space:4  p00["0"]    p01["1"] space:4                                     p06["n"] p07["n + 1"]  space:4 p02n["n + n"]
  p1["A"] p2["C"] p3["T"] p4["C"] p5["A"] p6["G"] s1["A"] s2["C"] s3["T"] s4["C"] s5["A"] s6["G"] f1["A"] f2["C"] f3["T"] f4["C"] f5["A"] f6["G"]
  space:10 ia1["2"]:2 space:6
  space:9 ic1["4"]:4 space:5
  space:8 it1["6"]:6 space:5
  space:10 ig1["6"]:6 space:1

  classDef imaginary fill:#526cfe09,color:#000,stroke-dasharray: 10 5;
  classDef position fill:#fff,color:#000,stroke-width:0px;

  classDef c1 fill:#ff7f0e,color:#fff;
  classDef c2 fill:#ffbb78,color:#000;
  classDef c2a fill:#ffbb788a,color:#000;
  classDef c3 fill:#2ca02c,color:#fff;
  classDef c4 fill:#98df8a,color:#000;
  classDef c4a fill:#98df8a8a,color:#000;
  classDef c5 fill:#d62728,color:#fff;
  classDef c6 fill:#ff9896,color:#000;
  classDef c6a fill:#ff98968a,color:#000;
  classDef c7 fill:#9467bd,color:#fff;
  classDef c8 fill:#c5b0d5,color:#000;
  classDef c9 fill:#8c564b,color:#fff;
  classDef c10 fill:#c49c94,color:#000;
  classDef c11 fill:#e377c2,color:#fff;
  classDef c12 fill:#f7b6d2,color:#000;
  classDef c13 fill:#bcbd22,color:#fff;
  classDef c14 fill:#dbdb8d,color:#000;
  classDef c14a fill:#dbdb8d8a,color:#000;
  classDef c15 fill:#17becf,color:#fff;
  classDef c16 fill:#9edae5,color:#000;

  class s5,ia1 c2
  class f1 c2a
  class s4,ic1 c4
  class f2 c4a
  class s3,it1 c6
  class f3 c6a
  class s6,ig1 c14
  class f6 c14a
  class p1,p2,p3,p4,p5,p6,p7,p8,p9,f1,f2,f3,f4,f5,f6,f7,f8,f9 imaginary
  class pomn,p00,p01,p06,p07,p02n position

Mathematical Definition

Let \(X\) is Carrier set

Let \(S\) is Sequence length of \(n\) described as function \(S : \{1,...,n\} \longrightarrow X\)

Let \(Binding\) is Binding

Let \(S_{cycled} : \big\{ \{1,...,n\} \longrightarrow X \big\} \longrightarrow \big\{ Z \longrightarrow X \big\}\) is a cycled sequence

\[S_{cycled}(S)(i) = S\big( i - n \times \lfloor ( i - 1) \div n \rfloor \big)\]

Define Bindings

Define a set of terminal values - \(\bot = \{-n+1,...,0\}\)

Let \(R : \{1,...,n\} \longrightarrow \{1,...,n\} \cup \bot,\) is a corresponding references

Define

\[Iterator : \big\{ S \big\} \longrightarrow \big\{ R \big\},\]
\[Iterator(S)(i) = max \big\{j \in \{-n+1,...,i\}\big|S_{cycled}(j) = S(i) \land j \ne i \big\} \]
\[Start = <Iterator, \bot> \in \{Binding\}\]
\[\exists Start^{-1} = <Iterator^{-1}, \bot> \in \{Binding^{-1}\},\]
\[Iterator^{-1} : \big\{ R \big\} \longrightarrow \big\{ \{1,...,n\} \longrightarrow \{1,...,m\} | m \leq n \big\}\]
\[Iterator^{-1}(R)(i) = \Bigg\{\begin{array}{l} \Big|<j \in \{1,...i\} | R(j) \in \bot >\Big|, & \ R(i) \in \bot \\ Iterator^{-1}(R, R(i)), & R(i) \in \{1,...,n\} \end{array}\]
\[Iterator(S) = Iterator(Iterator^{-1}(Iterator(S)))\]

Define a set of terminal values - \(\bot = \{n+1,...,2n\}\)

Let \(R : \{1,...,n\} \longrightarrow \{1,...,n\} \cup \bot,\) is a corresponding references

Define

\[Iterator : \big\{ S \big\} \longrightarrow \big\{ R \big\},\]
\[Iterator(S)(i) = min \big\{j \in \{i,...,2n\}\big|S_{cycled}(j) = S(i) \land j \ne i \big\}\]
\[End = <Iterator, \bot> \in \{Binding\}\]
\[\exists End^{-1} = <Iterator^{-1}, \bot> \in \{Binding^{-1}\},\]
\[Iterator^{-1} : \big\{ R \big\} \longrightarrow \big\{ \{1,...,n\} \longrightarrow \{1,...,m\} | m \leq n \big\}\]
\[Iterator^{-1}(R)(i) = \Bigg\{\begin{array}{l} \Big|<j \in \{i,...n\} | R(j) \in \bot >\Big|, & \ R(i) \in \bot \\ Iterator^{-1}(R, R(i)), & R(i) \in \{1,...,n\} \end{array}\]
\[Iterator(S) = Iterator(Iterator^{-1}(Iterator(S)))\]

Define Intervals Chain

Define

\[IC = <\Delta_1, \Delta_2, ..., \Delta_n> | \forall j \in \{1,...,n\} \exists \Delta_j \in \{1,...,n\},\]
\[\exists \ Intervals : \big\{S\} \longrightarrow \big\{ IC \big\},\]
\[Intervals(S)(i) = | i - Iterator(S)(i)|,\]
\[\exists \ Follow : \big\{ IC \big\} \longrightarrow \big\{ R \big\},\]
\[Follow(IC)(i) = i - IC(i),\]
\[\exists Intervals^{-1} : \big\{ IC \big\} \longrightarrow \big\{ \{1,...,n\} \longrightarrow \{1,...,m\} | m \leq n \big\},\]
\[Intervals^{-1}(IC)(i) = Iterator^{-1}(Follow(IC))(i),\]
\[Intervals(S) = Intervals(Intervals^{-1}(Intervals(S)))\]
\[\exists Trace : \big\{ IC \big\} \longrightarrow \big\{ R \big\}\]
\[Trace(IC)(i) = \Bigg\{\begin{array}{l} i, & \ i \in \bot \\ Trace\big(IC\big)\big(Follow(IC, i)\big) & i \in \{1,...,n\} \end{array}\]

Where:

  • \(n := |IC|\) is called length of the intervals chained, \(n \in N\)
  • \(\Delta_i\)​ is called the \(i\)-th element (or interval) of the intervals chained

Define

\[IC = <\Delta_1, \Delta_2, ..., \Delta_n> | \forall j \in \{1,...,n\} \exists \Delta_j \in \{1,...,n\},\]
\[\exists \ Intervals : \big\{S\} \longrightarrow \big\{ IC \big\},\]
\[Intervals(S)(i) = | i - Iterator(S)(i)|,\]
\[\exists \ Follow : \big\{ IC \big\} \longrightarrow \big\{ R \big\},\]
\[Follow(IC)(i) = i + IC(i),\]
\[\exists Intervals^{-1} : \big\{ IC \big\} \longrightarrow \big\{ \{1,...,n\} \longrightarrow \{1,...,m\} | m \leq n \big\},\]
\[Intervals^{-1}(IC)(i) = Iterator^{-1}(Follow(IC))(i),\]
\[Intervals(S) = Intervals(Intervals^{-1}(Intervals(S)))\]
\[\exists Trace : \big\{ IC \big\} \longrightarrow \big\{ R \big\}\]
\[Trace(IC)(i) = \Bigg\{\begin{array}{l} i, & \ i \in \bot \\ Trace\big(IC\big)\big(Follow(IC, i)\big) & i \in \{1,...,n\} \end{array}\]

Where:

  • \(n := |IC|\) is called length of the intervals chained, \(n \in N\)
  • \(\Delta_i\)​ is called the \(i\)-th element (or interval) of the intervals chained

Special properties

Intervals chain \(IC\) have been calculated with Bounded binding have a special properties

\[IC(i) \le n | \forall i \in \{1,...,n\}\]
\[Follow(IC)(i) <> Follow(IC)(j) | \forall i != j\]
\[j < 1 \land j = Trace(IC)(n + j) | \forall i \in \{1,...,n\} \exists j = Trace(IC)(i)\]
\[IC(i) \le n | \forall i \in \{1,...,n\}\]
\[Follow(IC)(i) <> Follow(IC)(j) | \forall i != j\]
\[j > n+1 \land j = Trace(IC)(j - n) | \forall i \in \{1,...,n\} \exists j = Trace(IC)(i)\]

Let \(B = \{Start, End\} \subset \{Binding\}\) is set of Cycled Binding