Skip to content

Intervals Distribution

An intervals distribution is an n-tuple of natural numbers where the index represents the interval length and the value is a count of its appearances in the interval chain.

block-beta
  columns 7
  space  p1["1"] p2["2"] p3["3"] p4["4"] p5["5"] p6["6"]
  space s1["1"] s2["2"] s3["3"] s4["2"] s5["4"] s6["6"]

  classDef imaginary fill:#526cfe09,color:#000,stroke-dasharray: 10 5;
  classDef position fill:#fff,color:#000,stroke-width:0px;
  class inf,sup imaginary
  class p0,p1,p2,p3,p4,p5,p6,p7 position

  classDef c1 fill:#ff7f0e,color:#fff;
  classDef c2 fill:#ffbb78,color:#000;
  classDef c2a fill:#ffbb788a,color:#000;
  classDef c3 fill:#2ca02c,color:#fff;
  classDef c4 fill:#98df8a,color:#000;
  classDef c4a fill:#98df8a8a,color:#000;
  classDef c5 fill:#d62728,color:#fff;
  classDef c6 fill:#ff9896,color:#000;
  classDef c6a fill:#ff98968a,color:#000;
  classDef c7 fill:#9467bd,color:#fff;
  classDef c8 fill:#c5b0d5,color:#000;
  classDef c9 fill:#8c564b,color:#fff;
  classDef c10 fill:#c49c94,color:#000;
  classDef c11 fill:#e377c2,color:#fff;
  classDef c12 fill:#f7b6d2,color:#000;
  classDef c13 fill:#bcbd22,color:#fff;
  classDef c14 fill:#dbdb8d,color:#000;
  classDef c14a fill:#dbdb8d8a,color:#000;
  classDef c15 fill:#17becf,color:#fff;
  classDef c16 fill:#9edae5,color:#000;

  class pomn,p00,p01,p06,p07,p02n position
  class t1,t2,t5,e0,e1 position

Let there be an interval chain.

block-beta
  columns 7
  space  p1["1"] p2["2"] p3["3"] p4["4"] p5["5"] p6["6"]
  space s1["1"] s2["2"] s3["3"] s4["2"] s5["4"] s6["6"]
  space:7
  space i1["1"] i2["2"] i3["1"] i4["1"] i5["0"] i6["1"]

  classDef imaginary fill:#526cfe09,color:#000,stroke-dasharray: 10 5;
  classDef position fill:#fff,color:#000,stroke-width:0px;
  class inf,sup imaginary
  class p0,p1,p2,p3,p4,p5,p6,p7 position

  classDef c1 fill:#ff7f0e,color:#fff;
  classDef c2 fill:#ffbb78,color:#000;
  classDef c2a fill:#ffbb788a,color:#000;
  classDef c3 fill:#2ca02c,color:#fff;
  classDef c4 fill:#98df8a,color:#000;
  classDef c4a fill:#98df8a8a,color:#000;
  classDef c5 fill:#d62728,color:#fff;
  classDef c6 fill:#ff9896,color:#000;
  classDef c6a fill:#ff98968a,color:#000;
  classDef c7 fill:#9467bd,color:#fff;
  classDef c8 fill:#c5b0d5,color:#000;
  classDef c9 fill:#8c564b,color:#fff;
  classDef c10 fill:#c49c94,color:#000;
  classDef c11 fill:#e377c2,color:#fff;
  classDef c12 fill:#f7b6d2,color:#000;
  classDef c13 fill:#bcbd22,color:#fff;
  classDef c14 fill:#dbdb8d,color:#000;
  classDef c14a fill:#dbdb8d8a,color:#000;
  classDef c15 fill:#17becf,color:#fff;
  classDef c16 fill:#9edae5,color:#000;

  class pomn,p00,p01,p06,p07,p02n position
  class t1,t2,t5,e0,e1 position

  s1 --> i1
  s2 --> i2
  s3 --> i3
  s4 --> i2
  s5 --> i4
  s6 --> i6


Intervals distribution used as an input data in calculating characteristics. While characteristics could be calculated based on the itervals chain intervals distribution highlights that intervals themselves are enough to measure the order of a sequence and intervals connectivity in intervals chain does not affect measure values. Whether it is possible in general to reconstruct distinctly an interval chain by the given interval distribution is an open question.

Interval distribution is useful in comparing intervals produced from the same sequence with different Binding. In the interest of studying how intervals depend on Binding direction for Bounded Binding FOA introduce two operations on distributions:

  • Lossy - takes two intervals distribution and produce new one only with intervals exists in both distributions.
  • Redundant - extends intervals distribution A with intervals that appears only in intervals distrubution B.

Mathematical Definition

Let \(IC\) is Interval Chain length of \(n\) described as function \(IC : \{1,...,n\} \longrightarrow \{1,...,n\}\)

Define

\[ID : \big\{ IC \big\} \longrightarrow \big\{ \{1,...,n\} \longrightarrow N_0 \big\},\]
\[ID(IC)(i) = \Big| \big\{ j \in \{1,...,n\} | IC(j) = i \big\} \Big|\]