Redundant Intervals Distribution
A redundant intervals distribution is an aggregation of two interval distributions having all intervals from the first one and intervals existing only the second.
Redundant Interval Distribution is a union of two distributions.
Mostly, this distribution is used to solve measure dependence on Binding direction with Bounded binding. In that case, this would be equivalent to counting both intervals - first for Start binding direction and End binding direction.
For example, there are 2 distributions for Bounded Binding - one uses Start binding direction and the other End binding direction.
block-beta
columns 8
p0["0"] p1["1"] space:3 p5["5"] p6["6"] p7["7"]
inf["⊥"] s1["A"] s2["C"] s3["T"] s4["C"] s5["A"] s6["G"] sup["⊥"]
space es0["Start(1) = 1"]:1 ts1["Start(5)=4"]:5 space
space te1["End(1) = 4"]:4 ee0["End(5) = 2"]:2 space
classDef imaginary fill:#526cfe09,color:#000,stroke-dasharray: 10 5;
classDef position fill:#fff,color:#000,stroke-width:0px;
class inf,sup imaginary
class p0,p1,p5,p6,p7 position
classDef c1 fill:#ff7f0e,color:#fff;
classDef c2 fill:#ffbb78,color:#000;
classDef c2a fill:#ffbb788a,color:#000;
classDef c3 fill:#2ca02c,color:#fff;
classDef c4 fill:#98df8a,color:#000;
classDef c4a fill:#98df8a8a,color:#000;
classDef c5 fill:#d62728,color:#fff;
classDef c6 fill:#ff9896,color:#000;
classDef c6a fill:#ff98968a,color:#000;
classDef c7 fill:#9467bd,color:#fff;
classDef c8 fill:#c5b0d5,color:#000;
classDef c9 fill:#8c564b,color:#fff;
classDef c10 fill:#c49c94,color:#000;
classDef c11 fill:#e377c2,color:#fff;
classDef c12 fill:#f7b6d2,color:#000;
classDef c13 fill:#bcbd22,color:#fff;
classDef c14 fill:#dbdb8d,color:#000;
classDef c14a fill:#dbdb8d8a,color:#000;
classDef c15 fill:#17becf,color:#fff;
classDef c16 fill:#9edae5,color:#000;
class s1,s5 c4
class inf,sup,te1,ee0,ts1,es0 c4a
class pomn,p00,p01,p06,p07,p02n position
Redundant Interval Distribution will include all intervals [1, 4, 2].
Mathematical Definition
Let \(ID\) is Intervals distribution
Define Redundunt Interval Distribution
\[RID: \{ID\} \times \{ID\} \longrightarrow \{ID\}\]
\[RID(ID_1, ID_2)(i) = max \{ID_1(i), ID_2(i) \}\]