Partial Order
A Partial order is an Order having empty elements.
block-beta
columns 29
i1["1"] i2["2"] i3["3"] i4["4"] i5["5"] i6["6"] i7["7"] i8["8"] i9["9"] i10["10"] i11["11"] i12["12"]
i13["13"] i14["14"] i15["15"] i16["16"] i17["17"] i18["18"] i19["19"] i20["20"]
i21["21"] i22["22"] i23["23"] i24["24"] i25["25"] i26["26"] i27["27"]
i28["28"] i29["29"]
s1["1"] s2["2"] s3["3"] s4["4"] s5["5"] s6["5"] s7["1"] s8["6"] s9["4"] s10["2"]
s11["7"] s12["4"] s13["8"] s14["-"] s15["-"] s16["8"] s17["3"] s18["-"] s19["-"] s20["8"]
s21["-"] s22["9"] s23["-"] s24["5"] s25["-"] s26["3"] s27["-"] s28["-"] s29["3"]
classDef c1 fill:#ff7f0e,color:#fff;
classDef c2 fill:#ffbb78,color:#000;
classDef c3 fill:#2ca02c,color:#fff;
classDef c4 fill:#98df8a,color:#000;
classDef c5 fill:#d62728,color:#fff;
classDef c6 fill:#ff9896,color:#000;
classDef c7 fill:#9467bd,color:#fff;
classDef c8 fill:#c5b0d5,color:#000;
classDef c9 fill:#8c564b,color:#fff;
classDef c10 fill:#c49c94,color:#000;
classDef c11 fill:#e377c2,color:#fff;
classDef c12 fill:#f7b6d2,color:#000;
classDef c13 fill:#bcbd22,color:#fff;
classDef c14 fill:#dbdb8d,color:#000;
classDef c15 fill:#17becf,color:#fff;
classDef c16 fill:#9edae5,color:#000;
classDef skip fill:#ffffff
classDef index fill:#ffffff,stroke-width:0px
class s14,s15,s18,s19,s21,s23,s25,s27,s28 skip
class i1,i2,i3,i4,i5,i6,i7,i8,i9,i10 index
class i11,i12,i13,i14,i15,i16,i17,i18,i19,i20 index
class i21,i22,i23,i24,i25,i26,i27,i28,i29 index
Mathematical Definition
Let \(-\) is Empty element
Let \(- \notin N\)
Define \(N_{-} = N \cup \{-\}\)
The Partial order \(O_p\) is defined as an l-tuple with additional constraints:
\[O_p = <o_1, o_2, ..., o_l>,\]
\[\forall i \in \{1, ..., l\} \exists o_i \in N_{-} \]
\[ \exists j \in \{1, ..., l\}, \forall i < j | O_p(i) \in \{ -\} \land O_p(j) = 1 \]
\[\forall i \in \{1, ..., l\}, O_p(i) \in \{-\} \lor O_p(i) \leq max(o_1, ..., o_{i-1}) + 1 \big| max(\{-\})=0\]
Where:
- \(o_i\) is called the \(i\)-th element (or coordinate) of the partial order
- \(l := |O_p|\) is called length of the partial order, \(l \in N\)
- \(n := |\{ O_p(i) | O_p(i) \ne - \}|\) is non-empty elements count, \(n \in N\)
Order of Partial Sequence
Let \(X\) is Carrier Set
Let \(X_{-}\) is Partial Carrier Set
\[X \subset X_{-}\]
Let \(-\) is Empty element of Partial Carrier Set
Let \(S_p\) is Partial Sequence described as function \(S_p : \{1,...,l\} \longrightarrow X_{-}\)
Let \(alphabet_p\) is Alphabet of Partial Sequence function
\[alphabet_p : \big\{\{1,...,l\} \longrightarrow X_{-} \big\} \longrightarrow \big\{\{1,...,m\} \longrightarrow X \big\}\]
Define
\[order_p(S_p) : \big\{\{1,...,l\} \longrightarrow X_{-} \big\} \longrightarrow \big\{\{1,...,l\} \longrightarrow \{1,...,l\} \big\},\]
\[A = alphabet_p(S_p),\]
\[order_p(S_p)(i) = \Bigg\{\begin{array}{l} j \ \big| j \in \{1,...,l\}, S_p(i)=A(j), & S_p(i) \notin \{-\} \\ -, & S_p(i) \in \{-\} \end{array}\]
Order product Alphabet
Let \(X\) is a Carrier set
Let \(A\) is a Aphabet \(A : \{1, ..., m\} \longrightarrow X,\)
Let \(S_p\) is a Partial sequenece \(S : \{1, ..., l\} \longrightarrow X_{-},\)
the following equations are true
\[O_p = order_p(S_p),\]
\[A = alphabet_p(S_p),\]
\[S_p = ( O_p \odot A),\]
\[S_p(i) = \Bigg\{\begin{array}{l} A(O_p(i)) , & O_p(i) \notin \{-\} \\ -, & O_p(i) \in \{-\} \end{array}\]