Congeneric Sequence
Congeneric sequence is an extreme case of Parial sequence where all non-empty elements are equals.
\(S_{c|T}\) is Congeneric sequence for T
block-beta
columns 29
i1["1"] i2["2"] i3["3"] i4["4"] i5["5"] i6["6"] i7["7"] i8["8"] i9["9"] i10["10"] i11["11"] i12["12"]
i13["13"] i14["14"] i15["15"] i16["16"] i17["17"] i18["18"] i19["19"] i20["20"]
i21["21"] i22["22"] i23["23"] i24["24"] i25["25"] i26["26"] i27["27"]
i28["28"] i29["29"]
s1["-"] s2["-"] s3["T"] s4["-"] s5["-"] s6["-"] s7["-"] s8["-"] s9["-"] s10["-"]
s11["-"] s12["-"] s13["-"] s14["-"] s15["-"] s16["-"] s17["T"] s18["-"] s19["-"] s20["-"]
s21["-"] s22["-"] s23["-"] s24["-"] s25["-"] s26["T"] s27["-"] s28["-"] s29["T"]
classDef c1 fill:#ff7f0e,color:#fff;
classDef c2 fill:#ffbb78,color:#000;
classDef c3 fill:#2ca02c,color:#fff;
classDef c4 fill:#98df8a,color:#000;
classDef c5 fill:#d62728,color:#fff;
classDef c6 fill:#ff9896,color:#000;
classDef c7 fill:#9467bd,color:#fff;
classDef c8 fill:#c5b0d5,color:#000;
classDef c9 fill:#8c564b,color:#fff;
classDef c10 fill:#c49c94,color:#000;
classDef c11 fill:#e377c2,color:#fff;
classDef c12 fill:#f7b6d2,color:#000;
classDef c13 fill:#bcbd22,color:#fff;
classDef c14 fill:#dbdb8d,color:#000;
classDef c15 fill:#17becf,color:#fff;
classDef c16 fill:#9edae5,color:#000;
classDef skip fill:#ffffff
classDef index fill:#ffffff,stroke-width:0px
class s1,s2,s4,s5,s6,s7,s8,s9,s10 skip
class s11,s12,s13,s14,s15,s16,s18,s19,s20 skip
class s21,s22,s23,s24,s25,s27,s28,s30 skip
class s31,s32,s33,s34,s35 skip
class i1,i2,i3,i4,i5,i6,i7,i8,i9,i10 index
class i11,i12,i13,i14,i15,i16,i17,i18,i19,i20 index
class i21,i22,i23,i24,i25,i26,i27,i28,i29 index
Mathematical Definition
Let \(X\) is Carrier Set
Let \(X_{-}\) is Partial Carrier Set
\[X \subset X_{-}\]
Let \(S_p\) is Partial sequence \(S_p : \{1, ..., l\} \longrightarrow X_{-},\)
\(S_p\) is called \(S_{c|e}\) - Congeneric sequence of \(e\) element - if \(\exists e \in X\Big|\forall i, S_{p}(i) \in \{-, e\}\)